If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t=16t^2
We move all terms to the left:
4t-(16t^2)=0
determiningTheFunctionDomain -16t^2+4t=0
a = -16; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-16)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-16}=\frac{-8}{-32} =1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-16}=\frac{0}{-32} =0 $
| 3-5p-6=-13 | | -1/4a-4=7=4a-3 | | 4.5-x=-1.2 | | 5a+59=180 | | 12m-12=8m-88 | | -4+u-2=-14 | | X.4x+1.25=10.41 | | -88=-4(6-2a) | | -y/5=32 | | -2=2+4w | | 3(2x+2)=x | | -9y+6=-18+13 | | w-3÷12=11 | | 2x+2+1=0 | | -18=w-5-8 | | 0=2+5x-7x | | (3x-8)=2x+7 | | 9=5x/6+34 | | 0=-4x^2+16x+20 | | -1/3+5e=-5/7 | | -3=x/25-6 | | J+3(1+2j)=17 | | 4^x-2=(1/16)^2x-7 | | 2-2x+3)=7 | | 27+o=11 | | k+5-4k=-16 | | 4x+10=26+2x | | 6(2x-5)=2(5x=3) | | J+3(1+2j)=7 | | 0.72=04(x+1.4) | | 10+x=3x+16 | | 12x+4(4x-3)=4(6x+4)-4 |